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Abstract. We investigate the energy landscape of two-dimensional network models for covalent
glasses by means of the lid algorithm. For three different particle densities and for a range of
network sizes, we exhaustively analyse many configuration space regions enclosing deep-lying
energy minima. We extract the local densities of states and of minima, and the number of
states and minima accessible below a certain energy barrier, the ‘lid’. These quantities show
on average a close to exponential growth as a function of their respective arguments. We
calculate the configurational entropy for these pockets of states and find that the excess specific
heat exhibits a peak at a critical temperature associated with the exponential growth in the local
density of states, a feature of the specific heat also observed in real glasses at the glass transition.

1. Introduction

Since the beginning of the last decade, systems with complex multi-minima energy
landscapes have attracted increasing attention [1], with a common theme being thermal
relaxation or more generally, stochastic dynamics on the landscapes. Such dynamics can
either have intrinsic physical interest or be utilized as an optimization device as done in
annealing techniques. A number of approaches have been developed, focusing on different
aspects of the problem. On the one hand, molecular dynamics and Monte Carlo (MD/MC)
simulations are performed, often using highly refined model potentials, which are designed
to reproduce as closely as possible the actual dynamics at short times [2] and the equilibrium
statistical mechanical properties of the system [3–5], respectively. On the other hand, one
uses simple models describing only selected features of the system, which are amenable
to analytical techniques [6, 7] or can be studied numerically [8] in enough detail to yield
general insights into the qualitative and semiquantitative behaviour of the system. As part of
the latter approach one can consider abstract graph models, which formally can be thought
of as ‘lumped’ representations of the energy landscape itself [6, 9, 10].

The network models for covalent glasses presented in this paper belong to the second
class of approaches, since they are tailored to describe the slow part of the complex
hierarchy of relaxational degrees of freedom [12–14] which characterize glasses. On
the shortest timescales, we are dealing with small vibrations in the immediate vicinity of
individual minima of the energy surface. These are responsible for most of the vibrational
and reversible elastic properties of the glass. Here, the analysis usually employs matrix
diagonalizations at the point of the minimum, or short-time MD simulations. At the
next level, neighbouring minima are accessible by crossing very small barriers. This
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mechanism is probably responsible for some of the anomalous low-temperature properties
of glasses. One would suspect that, at this level of detail, the so-called ‘two-state models’
[15, 16] and their descendants, e.g. the soft potential models [17, 18], would be a relevant
theoretical description, which can be complemented by studying the diffusion of (single)
particles by MD/MC simulations at various temperatures. At large timescales and/or high
temperatures (up to the point where the glass melts), the main structural feature of the
glass is its topology. Accordingly, one usually visualizes the glass as a random network of
building units [13, 14, 19], where the links represent either chemical bonds (e.g. Si–Si) or
sequences of chemical bonds (e.g. Si–O–Si or B–O–B). The relevant excitations are likely
to be long-wavelength distortions of the covalent network, which involve the displacement
of many atoms, with each displacement small compared with the interparticle distance.
Such distortions can substantially change the geometry of the structure, while they only
weakly affect its topology. In systems containing thousands of atoms per simulation cell it
becomes computationally very expensive if not impossible to run MD/MC simulations for
the required times while still using highly refined potentials. However, the structural and
energetic hierarchy of a covalent glass, leading to a separation into vibrational, geometric,
and topological properties of the glass, opens the possibility of employing network models
on lattices to selectively describe the topology of the glass. Similar lattice models for
polymers have been successfully analysed in recent years using MC simulations [8].

A salient feature of glasses is the glass transition, with a peak of the (excess) specific heat
capacityCp at a temperature near the transition temperatureTG [13, 14]. This peak is usually
associated with the so-called configurational entropy reflecting the multitude of different
topological structures accessible to the glass during this transition. Each configuration
represents a basin around a relatively stable local minimum of the potential energy. Thus,
the configurational entropy is an excess entropy of the glassy state relative to the crystalline
state, whose entropy at this temperature is dominated by the vibrational states. Based on
the previous discussion, it should therefore be possible to link the excess entropy of glasses
to statistical features of the energy landscape of covalent network models.

Motivated by these considerations we numerically analysed the energy landscape of
small network models on two-dimensional lattices for a range of sizes and densities. The
restriction of the nodes of the networks to a lattice allows complete characterization of
subsets of the discrete landscape. Using the lid algorithm [9], we performed exhaustive
searches of local regions around deep-lying minima (so-called pockets), which yield
information on the local densities of states (DOS), the available configuration space volume
and the distribution of neighbouring minima. This information is then used to understand
some of the features of the thermodynamics and dynamics of the system.

The rest of the paper is organized as follows. In section 2, the lattice network model and
the lid algorithm are described. The results of the numerical investigations are presented in
sections 3.1 and 3.2, followed in section 3.3, by an analysis of the configurational entropy
of the model. Section 4 is the conclusion.

2. Model and algorithm

2.1. Lattice network model

The networks were placed on square lattices with periodic boundary conditions. The size
of the repeated cellS × S ranged from 10× 10 to 20× 20 grid points. The number
densityρ = NA/V , V = S2, of theNA building units per cell (such units are henceforth
for simplicity called atoms) was chosen to be approximately 0.13, 0.14 and 0.15. The
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interaction potential given by equations (1) and (2) between the atoms consisted of a sum
of a two- and a three-body term. The former,V2(r), grows quickly towards large positive
values for distancesr < 1.8a and equals infinity forr < a, while for r > 3.2a it smoothly
approaches zero. The lattice parametera was chosen in such a way that the optimal distance
between atoms was about 2.1a. The three-body termV3(θ) details the angular dependence
of the interactions among nearest neighbours (it only applies forr < 3.2a). It has a
minimum at about 120◦, reaches infinity for angles smaller than 80◦, and vanishes smoothly
when the angle approaches 180◦. The actual formulae used are not very important, but are
nevertheless mentioned for completeness:

V2(r) =


+∞ r < 1.6
1
3(r − 1.6)(r − 3.2)2(r − 7.1) 1.66 r 6 3.2

0 r > 3.2

(1)

and

V3(θ) =


+∞ θ < 80◦

5.8× 10−8(θ − 80◦)(θ − 180◦)2θ 80◦ 6 θ 6 180◦

0 θ > 180◦.

(2)

Thus, four-fold coordination was possible, but not favoured energetically. A typical
metastable configuration is shown in figure 1. The binding energy of such deep-lying
minima was in the range of−6.0 to −6.5 eV/atom. The (crystalline) ground state of an
infinite system—without an underlying lattice—has a hexagonal structure similar to that of
a graphite layer, with each atom surrounded by three equidistant neighbours. In the finite
on-lattice system, most of the deep-lying minima encountered contained a certain amount of
adjacent slightly flattened hexagons, irrespective of the density, with the flattening due to the
underlying square lattice. Note that, owing to the periodic boundary conditions, there will
be configurations which appear to be different, but are equivalent to one another as they are
connected by translations and/or rotations of the system. In this work, such configurations
are identified as equivalent and counted only once.

Another issue that needs to be considered when placing the networks on a lattice is the
mesh-size dependence of the results, which should of course be negligible. Clearly, halving
the lattice constant will lead to more states. But as long as the width of the energy interval
δE used in the investigation is such that these new configurations all lie within the interval
[E,E + δE], the change in the lattice parameter just adds a constant to the entropy. This
corresponds to a parallel shift in a semilogarithmic plot of the local DOS, and, as we shall
see, does not affect our conclusions. We have ensured that this requirement is fulfilled
reasonably well for our on-lattice networks. Finally, one has to establish the connectivity of
the configuration space. In our case, the neighbours of a given configuration are obtained by
all possible moves of a single atom from its current position to one of the neighbour points
of the lattice. WithNA atoms we have in ad-dimensional square lattice 2dNA neighbours
for each configuration. There is of course an amount of arbitrariness in the choice of the
elementary moves which define the connectivity of the landscape. We were guided by the
simple physical consideration that a single move should involve a change of coordinates
which is small, i.e. of ordera. This seems reasonable considering that collective moves
are associated to vibrational motion, and thus take place on a timescale much shorter than
those of interest here.
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Figure 1. A typical network configuration belonging to a low-energy metastable state in a
system of 27 atoms with a unit cell of linear size 14.

2.2. Lid algorithm

The method chosen to investigate the energy landscape of the networks is the so-called
lid algorithm. Here, we will only give a short summary of the basic procedure; a more
detailed description of the algorithm and the problem-independent implementation we have
used can be found in the literature [9, 20]. Note that the lid algorithm is only applicable for
discrete configuration spaces; continuous energy landscapes require a modified approach,
the so-called threshold algorithm [10, 11].

The central idea is to restrict the investigation of the configuration space to a set of
smaller subregions, called pockets, which surround local energy minima. These pockets
contain a few hundred to a few million states and can be explored exhaustively. The
procedure is as follows. Starting from a minimumxi , we list all the states that are accessible
to a nearest-neighbour random walk, which starts atxi and which is restricted to states of
energy lower than a prescribed energy valueLk, henceforth called the ‘lid’. (By nearest-
neighbour random walk we mean a random walk in configuration space, whose steps consist
of precisely the previously defined elementary moves.) From the exhaustive listing, we
can compute the local DOSD(E;Lk, xi) and the local density of minimaDM(E;Lk, xi)
for states available below the lidLk. IntegratingD(E;Lk, xi) with respect toE over
the interval [0, Lk] we obtain the number of available statesN(Lk; xi), and by the same
operation applied toDM(E;Lk, xi) the number of available local minimaM(Lk; xi). The
search is repeated for successively higher lid valuesLk+1, Lk+2, etc, and for as many other
pockets as possible. Note that the pocket is delimited by energy barriers instead of some
distance in configuration space from the starting minimum. This is a natural first choice
of selecting a physically relevant region of configuration space, due to the presence of an
Arrhenius factorτesc∝ exp(Lk/T ), in the time of escape out of the pocket. One would like
to repeat the analysis starting from every local minimum within a given pocket. Since the
number of local minima within a given pocket of decent size (>105 states) was already on
the order of 104, this was not possible, and the available computer time was instead used
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for a sampling over more pockets for a given cell size and density. The starting minima
for these pockets were found by using either simulated annealing or an adaptation of the
lid method itself.

3. Results

In this section we first describe in some detail the features of the data obtained by the
exhaustive investigations, and then discuss their links to the thermodynamical features of
the model and of glasses.

3.1. General features of the data

Figures 2(a)–(c) describe three different pockets, belonging to the systems(NA = 22; S =
12), (NA = 36; S = 16) and (NA = 53; S = 20) respectively. In each case we plot, on
a semilogarithmic scale,N(L) andM(L) as functions of the lidL, andD(E;Lmax) and
DM(E;Lmax) as function of the energyE. For convenience, the dependence onLmax of
the last two functions is left understood. One notices the average exponential growth in all
four quantities, with a flattening ofD(E) andDM(E) for energies near the maximum lid.
Such a behaviour is exhibited in a large majority of the pockets, independent of (linear)
sizeS and densityρ.

Figure 3 shows semilogarithmic plots of the local DOSD(E) for five different pockets
belonging to systems of different cell sizesS and different densitiesρ as indicated in the
caption. These data are meant to illustrate the variations in the shape ofD(E) seen in the
simulations. Note that the larger systems shown in the panel (a) have a steeper growth
of the local DOS than the smaller systems displayed in panel (b). In the following we
denote byxi the state of lowest energy within a certain pocket, and similarly by the indexi

various other quantities associated with the pocket. In about 60% of all pockets studied the
curves forD(E) resembled those shown in (a1) (26%) or (a2) (34%), i.e. they exhibited
simple exponential growthD(E) = gi exp(E/Ei) = gi exp(αiE), with gi = 1 andgi > 1,
respectively. Here,Ei = 1/αi is the energy scale characterizing the exponential growth
laws. In addition, the closely related case (b1) appeared for 29% of the pockets, while (a3)
and (b2) represent some less common examples that occurred in 3% and 8% of all cases,
respectively. In some instances ((b1) and (a3)), the curves are best described by splitting
them into two sections, each showing exponential growth, but with different ‘growth factors’
αi(1) andαi(2).

Figure 4 is a plot ofα = 〈Ei〉−1 versus the linear size of the cell, for different densities.
Here the averaging is performed over all the pockets of systems with the same density
ρ and cell sizeS. It is clear thatα increases and correspondingly〈Ei〉 decreases with
decreasing density and increasing cell size. This result agrees qualitatively and to a certain
extent also quantitatively with what one would expect from the simple free-volume analysis
[12] outlined in the appendix. To show the agreement, the calculated curves based on
equation (6) forρ = 0.13, 0.14 and 0.15 are also depicted in figure 4 together with the
actual data.

For a given value ofNA and S (considering only the larger pockets), one finds a
considerable spread in the values ofEi , which vary up to a factor of two. This is quite
different from the corresponding results obtained e.g. for spin glasses [21, 22], but it is
consistent with the fluctuations ofN(L) andD(E;L) around the average exponential growth
curve. The size of the pockets and their local DOS are quite variable, possibly because
different spatially localized excitation patterns of the network can exhibit different growth
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Figure 2. Number of accessible statesN(L) (squares), accessible minimaM(L) (circles), DOS
D(E) (triangles) and density of minimaDM(E) (diamonds) within a pocket, as a function of
L [eV/atom] andE [eV/atom], respectively. Data are shown for three different pockets: (a)
(NA = 22; S = 12), (b) (NA = 36; S = 16) and (c) (NA = 53; S = 20).

behaviour in the associated DOS. Thus large side-basins with different growth laws can
appear upon exceeding some energy barrier.

The density of minima shows a strong similarity to the DOS. Again, exponential growth
is found, with the ratio of the growth factorsαi(D)/αi(DM) mostly in the range 1–2. This
result agrees with the observation that the number of accessible states in a pocketN(L) is
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Figure 3. Local DOSD(E) versusE [eV/atom] for several representative systems. (a) Black
squares (a1):(NA = 46; S = 18), black circles (a2):(NA = 41; S = 17), and black triangles
(a3): (NA = 34; S = 16). (b) White squares (b1):(NA = 13; S = 10) and white circles (b2):
(NA = 21; S = 12). Note the curves belonging to the larger systems shown in (a) are much
steeper than those belonging to the smaller system shown in (b).

more or less proportional to the number of minimaM(L), with the ratioN(Lmax)/M(Lmax)

mostly in the range 15–60.
As a function ofL, N(L)/M(L) increases only slightly with the lid value. This holds

true for all pockets investigated; and this observation is reflected inM(L) running nearly
parallel toN(L) in a semilogarithmic plot, once a lid value is reached where the first side-
minima are accessible. Of course,DM(E;Lmax) eventually decreases, in most instances for



8172 J C Sch¨on and P Sibani

Figure 4. The quantityα = 1/〈Ei〉 [1/(eV/atom)] for different densities. Black squares:
ρ = 0.13, black triangles:ρ = 0.14 and black circles:ρ = 0.15. The white symbols show the
corresponding theoretical predictions obtained through equation 6, withVA = 6. The average
over the inverse growth factorsEi is performed over all pockets in systems of the same density
and cell size.

energies close to the lid,E ≈ Lmax.
It is natural to investigate to what extent the properties of a pocket depend on the energy

of its lowest energy state. Denoting as the depth of a pocket the smallest energy barrier
which must be crossed in order to gain access to a lower minimum, we find that at least
for larger pockets,(N(Lmax) > 1000), the depth grows as the energy of the lowest state
decreases. With regard to the various growth factors, there exists a weak trend, in so far as
pockets around low-energy minima tend to grow on the average slightly faster than the high-
lying pockets, i.e. they have lower values of theEi ’s. However, many smaller pockets,
often containing less than a dozen states and only a couple of minima, are interspersed
among the larger ones along the energy-axis. Their depths do not appear to follow any
particular pattern, but their growth quite closely follows an exponential law, analogous to
the larger pockets.

3.2. A more detailed description of a typical example

Let us consider in more detail a typical case such as the system with(NA = 39, S = 17).
There are many local minima, each identified by its depth and by the energy of its lowest
state. Each valley has its local DOS, which only includes states accessible by crossing energy
barriers lower than the depth. All these local DOS are to a good approximation exponential,
and thus characterized by a growth rate, and its inverseEi . Figure 5 shows a set ofEi ’s
(circles) and of depths (squares) plotted as function of the energyE of the lowest state in
the corresponding pockets. We see that the inverse growth rates do not vary much from
pocket to pocket. The average value ofEi is for this systemEav

gr ≈ 0.035±0.005 eV/atom.
On the other hand, we note that pockets surrounding states of very low energy tend to be
deeper than those surrounding less deep minima. In other words, the lower the energy the
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Figure 5. Depth (squares) and inverse growth factorsEi , both quantities expressed in [eV/atom]
for several sample pockets as a function of the lowest energy of the pocket. The system
considered has(NA = 39; S = 17).

Figure 6. Local DOS of several sub-basins of the ‘ground-state’ pocket in the system
(NA = 39; S = 17), which appear successively as the lid is raised. The top curve is the
local DOS of the whole pocket. Note that the exponential trend is common to all sub-basins.

more rugged the landscape appears to be.
In addition, we show in figure 6 for the ‘ground state’ pocket (‘ground state’= deepest

minimum found on the energy landscape) the differencesδDOS(E;Lk) between the DOS
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for subsequent lid valuesLk−1 andLk. We note that these densities of states belonging to
the added subregions at lidL are very similar up to the point of joining the main pocket. In
particular, we note that at the lidL = 0.14 eV/atom a large group of similar basins that are
about as deep as the starting minimum join the main pocket. If one considers the growth
factors of theseδDOS, one findsEav

i (δDOS) ≈ 0.027± 0.03 eV/atom. These values are
quite similar to the growth factor of the whole ‘ground state’ pocket(Ei ≈ 0.028) eV/atom,
and lie at the lower end of the range of growth factors shown in figure 5. Thus, the larger
sub-basins added with increasing lid-size are quite similar to the pockets encountered during
the sampling of the whole energy landscape.

3.3. Configurational entropy

As mentioned in the introductory section, it is reasonable to discuss the excess entropy
of the glass in terms of configuration space properties of network models. We have to
assume that, at the temperatures of interest, the model system would thermalize in the
pockets described by our numerical investigation. In this context, it is important to realize
that the system experiences a qualitative change of behaviour at the temperatureT = Ei .
Analysing the expectation value of the energy of a pocket with an exponentially growing
DOS D(E) ∝ exp(E/Ei), one finds that forT < Ei , the system is trapped in the local
minimum at the bottom of the pocket, i.e. the high barriers of the pocket keep the system
isolated from the rest of the energy landscape. But forT > Ei , the system leaves the
pocket with overwhelming probability, irrespective of the depth of the pocket. For a further
discussion of exponential trapping and the competition among several exponential traps,
see [23].

If the assumption of thermalization within the pocket holds true forT 6 Ei , all quasi-
equilibrium properties of the system can be calculated by the usual formulae of statistical
mechanics, but with the sums over states restricted to a pocket. As the local DOS is
available, we can calculate average energies and heat capacities. The model specific heat
was calculated for the example pockets shown in figure 3, and plotted as a function ofT in
figure 7. As one would expect,CV shows a clear maximum at a temperature close to the
average inverse growth factor of the local DOS. The height of this peak is larger, the larger
the pocket is, and it is more pronounced the less the DOS deviates from an ideal exponential
growth law. Note that deviations from a perfect exponential growth show up as additional
features inCV . In particular, a rapid exponential increase (withEi(1)) of the DOS at low
energies followed by a slower exponential growth (withEi(2) > Ei(1)) (cf curves (b1) and
(b2) in figure 3(b))) is reflected in a prepeak atT ≈ Ei(1) followed by the major peak at
a temperature somewhat belowEi(2) (curves (c) and (e) in figure 7, respectively)†.

A qualitatively similar behaviour of the excess specific heatCp is observed in a
large number of glass-forming systems, ranging from molecular and polymer systems to
metallic and covalent glasses [14]. Thus, the exponential growth of the local DOS of the
network could be responsible for the configurational entropy observed in experiment. As a
consequence, the glass transition would be the result of the system experiencing exponential
trapping [23], with the glass transition temperatureTG ≈ Ei . In this context, one should

† This result agrees with the analytical calculation [23] for the specific heat of a system restricted to a pocket,
with an exponential DOS of depthDi between the minimum and the top of the (exponential part of the) pocket
and an inverse growth factorEi : CV = 1 for T � Ei , CV = 1/T 2 for T � Ei , andCV = Di/12E2

i for T = Ei .
Note that the behaviour ofCV for T � Ei is a consequence of considering only the states with energies below
the maximal lidLmax. If, e.g. the exponential growth is followed at higher energiesE > Lmax by a power law
growth,CV approaches a constant value with increasingT after peaking atT ≈ Ei .
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Figure 7. Specific heat in units of [kB ] versus temperature [eV/atom] calculated for several
representative examples: (a) (NA = 46; S = 18), (b) (NA = 41; S = 17), (c) (NA = 13; S =
10), (d) (NA = 34; S = 16), and (e) (NA = 21; S = 12). The three peaks in plots (a), (b) and
(d) are located at temperatures which match the inverse growth factorsEi of the exponential
density of states shown in figure 3(a): (a1), (a2) and (a3), respectively. The double peaks of
plots (c) and (e) correspond to the two different slopes characterizing the densities of states
shown in figure 3(b), (b1) and (b2), respectively.

point out that the high-temperature tail (T > Ei) of the calculated specific heat of a pocket
has no direct physical relevance when comparing the model with real glasses, since for
T > Ei the system would rapidly leave the pocket, and its equilibrium properties would no
longer be dominated by the local DOS belonging to a single pocket.

This hypothesis of the thermodynamics of the glass transition being controlled by
the trapping temperatures of locally ergodic, exponentially growing regions of the energy
landscape of the glass raises the important question of the behaviour of the model system
in the thermodynamic limit,NA, V →∞ with ρ = NA/V = constant. Clearly, the number
of possible neighbours of a configuration grows to infinity, and similarly the growth factor
of the local DOS, i.e. the trapping temperatureEi goes to zero. This follows from the fact
that due to the short range of the covalent interactions the energetic barriers in the system
would be expected to grow only withV (d−1)/d , while the energy, as an extensive quantity,
grows proportionally toV itself. But one must not overlook the fact that there will be large
entropic barriers preventing the system from exploring this infinite set of neighbouring states
even though these are not separated by unsurmountable energetic barriers. From a certain
point on, the system size has grown to such enormous proportions that the dynamics is
controlled by entropic barriers, i.e. one is no longer allowed to assume that on the relatively
short timescales available for observation the system can, e.g. ‘focus’ all the thermal energy
present in the network into a precise sequence of moves needed, e.g. to cross some barrier
to a neighbouring basin. (Otherwise we would be on timescales where the glassy state
can be transformed into the crystalline one, with the consequence that the configurational
entropy vanishes, of course.)

The existence of entropic barriers has important consequences for the dynamical
behaviour of the system. Since the trapping temperature is a local equilibrium quantity of
an exponentially growing regionR of the energy landscape, it is necessary, in principle, to
establish local ergodicity [12, 24] withinR, at temperatures below the trapping temperature.
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Usually, energetic barriers serve to delimit such regions, but in the thermodynamic limit
entropic barriers fulfil this task. However, visualization and characterization of such entropic
barriers is usually not straightforward.

The simplest picture of entropic barriers with regard to the energy landscape would
be to assume that the configuration space of the excitations of the (infinite) system can be
approximately separated into a direct product of independent subspaces. Each such subspace
can be treated in analogy to the independent modes of, e.g. vibrations, and would usually
be visualized as a ‘cluster of atoms’ within the network that has its individual excitation
spectrum and corresponding DOS. Such clusters would be only weakly correlated with each
other. Since the actual number of states within a pocket of the landscape of such a cluster
is small compared with the number of clusters in an infinite system, the distribution of
energy throughout the system equals a Poisson distribution over the clusters. In particular,
the entropyS(E, V,N) becomes an extensive function of the number of clustersNC :
S(E, V,N) = NCSC , whereEC = E/NC, VC = V/NC, andNAC = NA/NC). The
quantitySC is the entropy of a single cluster, and for an exponential DOS is proportional
to EC/Ei , similarly to the examples presented in this paper. If one now assumes that the
glass transition is a consequence of the energy landscape consisting of (possibly nested)
locally ergodic pockets (e.g. the ‘clusters’ discussed above) with exponentially growing
densities of states, one would identifyTG with the average inverse growth factorEi(VC) of
such regions. Using the simple growth law (Ei ∝ 1/V ) derived in the appendix, such an
identification yields an estimate of the size of these clusters. Since in the independent cluster
approximation clusters of sizeVC suffice to describe many of the thermodynamic properties
of the networks, this establishes a reasonable network size for structural investigations at
the level of network topology.

In the case of two-dimensional networks, the trapping temperature for a 20×20 system
with 50–60 atoms lies in the range of about 1 eV (≈ 104 K). Since the glass temperature
for covalent networks lies in the range of 0.1 eV (≈ 103 K), the energy landscapes of
networks withNA > 500 might be suitable for a realistic description of properties of
glasses. While this number has been derived from the analysis of two-dimensional networks,
preliminary results for three-dimensional networks indicate that the trapping temperature for
e.g. networks with 40 atoms lie at about 1.2 eV, leading again to an estimate of the needed
network size of aboutNA > 500.

4. Conclusions

In this paper, we have presented a first in-depth study of the microscopic energy landscape
of glasses at the level of their network topology. Such amorphous networks show an
exponential growth of many important quantities, in particular the local DOS and minima,
D(E;L) and DM(E;L) respectively, the accessible state space volumeN(L) and the
accessible neighbour-minimaM(L). This growth leads to exponential trapping that can
explain the occurrence of a glass transition in such systems. In particular, the peak in the
excess specific heat at the glass transition, that is often observed in experiments, follows
directly from the exponential growth law.

This type of local exponential growth appears to be a common feature of many complex
systems. Similar behaviour has been found for polymers [12, 25], spin glasses [21, 22, 26],
combinatorial optimization problems [9], crystalline solids [27, 28] and, in preliminary
results by the present authors, for three- dimensional random networks.

It is expected that these results can form a more solid basis for phenomenological models
of complex systems. An important open question is the issue of entropic barriers, since they



Properties of the energy landscape of network models 8177

control the effective size of locally ergodic pockets in large systems. Knowing this size
would allow the direct quantitive comparison of the calculations with experimental data:
e.g. one could predict the glass transition temperature and its dependence on cooling rates.
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Appendix

For the qualitative and semiquantitative analysis of the network glasses, the following very
simple free-volume model that is based on some rough assumptions about the nature of
the energy landscape can be helpful. (1) Starting from each configuration, 2dNA new
configurations can be generated by moving each atom to one of the 2d neighbouring sites
on the lattice (d is the dimension of the lattice). (2) The interactions are highly local, such
that the typical increase in energyEM of an acceptable move, i.e. one which leads to a
configuration below the energy lid, is essentially independent of the number of atoms in the
simulation cell. The typical increase in the energy/atom for a system withNA atoms when
an acceptable move is performed is thusEM/NA. (3) As long as the states belong to the fast-
growing region of the ‘pocket’, the number of downhill moves among the acceptable moves
will be very small. Thus we assume that a given move will result in a new configuration
with an energy increaseδE ' EM with a probabilityf (ρ,NA). In particular, the probability
f− for a downhill move should be very small compared withf , f− � f . Thus, the number
of configurationsN(E + δE) with an energy belowE + δE, is proportional to the number
of configurations below the energyE, N(E):

N(E + δE) ∝ N(E)(2dNAf ) (3)

from which it easily follows that

N(E) = N0 exp(αE) (4)

with α = 1/Ei = (1/EM)(2dNAf − 1) ≈ 2dNAf/EM . The last approximation should be
acceptable in the limitNA→∞, as long asf varies only weakly withNA (for fixed ρ).

It seems reasonable to assume thatf depends on the density of the system, and that it
increases with the free volume per atomvf = Vf /NA in the system, where the free volume
Vf is given in terms of the volume per atomVA asVf = V − NAVA. Thus we get, for
some constantc

f = cvf = c(V −NAVA)/NA = c(V/NA)(1− ρVA) (5)

and therefore

α = 1/Ei ≈ 2dNAf/EM ∝ V (1− ρVA). (6)

Equation (5) shows thatf increases with decreasing density for constant volume. ThusEi
also decreases with density, and secondly, for constant density

Ei ∝ 1/V . (7)

This final result agrees quite well with the observed behaviour.
Note that according to equation (6),Ei should actually decrease as 1/V (1 − ρVA).

In order to check this behaviour, we need to determineVA. This value corresponds to
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the number of lattice points that the atom would occupy in an energetically favourable
configuration (recall that we are investigating the pockets around deep-lying minima). For
an approximately hexagonal arrangement on the square lattice, we findVA = 6. If one plots
Y (= NAEi) againstX(= 1/(1− ρVA)) for all available volumesV = S2(S = 10, . . . ,20)
one finds that the data roughly follow straight lines as suggested by equation (6) [12].

Note that there exists only one free parameter(c/EM) in this simple free-volume
model. The number of accessible statesN(L) estimated by this model exhibits an average
exponential growth similar toD(E) (cf figure 2), and the qualitative dependence of the
growth factors onV = S2 and ρ should be essentially the same forD(E) and N(L),
unless, e.g. there is a high degree of degeneracy in the ground state of the pocket. But
even for polymer systems, where such a degenerate ground state occurs more frequently,
an analogous free-volume model roughly describes the dependence of the growth factors
on system size [12, 25].
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